DEVELOPMENT AND PERFORMANCES 3.5M SIC TELESCOPE FOR THE HERSCHEL MISSION

Dominique Piérot Optical Engineer, Instruments department , ASTRIUM EADS – Toulouse

OPTRO2010 Paris 04/02/2010

TELESCOPE DESIGN

Telescope	
focal length	28,5m
F/number	8.68
Field of view	0,25
secondary magnification	16.29
Mass	315kg
Primary reflector (M1)	
Radius of curvature	3490 mm
Conic constant	-1
Distance to M2	1583,6 mm

- Cassegrain 260x axial magnification
- •WFE 5.3µm rms (FOV0.Ø25° or 250mm)
- **•[80;670 μm] 70K**
- Focus located inside 5mm³
- All SiC-100 conception
- No refocalization mechanism
- •12 petals sintered to approximated shape,ground machining of brazed mirror, polishing by diamond tooling
- Al protected coating
- Sic thermal hardware wrapping

TELESCOPE MAIN INDUSTRIAL TEAM

Optical performances verification

- Gravity compensation during polishing
 - WFE Correlation with FEM predictions
- Alignment and geometrical controls
 - Use of laser tracker
- WFE measurement under ambient conditions
 - Autocollimation on liquid mirror Hartman method, at 0.633 µm 66x66 points
- Focal length measurement (±2.10⁻⁴)
- Best Surface curvature characterisation

 WFE and best focus cool down variation control

All the space you need 04.02.2010 - p4 Presentation Herschel - OPTRO2010

WFE measurement, 2006_02_08_10_28_10_image.dat Meas 1044,79 RMS 3475.91 - - Ambient measurements in-between thermal

tests

33x33 grid (HSM)

•Equiv 66x66 grid by interlacing a 33x33 mask

All the space you need Presentation Herschel – OPTRO2010

Vacuum thermal test set-up

All the space you need 04.02.2010 – p6 Presentation Herschel – OPTRO2010

WFE measurement – LSM mode

- Thermal tests under vacuum
- 8x8 grid with individual liquid mirrors
- Test of low aberrations evolution : spherical aberration, coma, astigmatism and trefoil
- focus drift monitoring and fit at operationnal temperatureCool down deformations signed mainly by defocus and trefoil

Predictions & measured Focus position

- 2.1µm rms WFE and -11.7 mm defocus measured at 70K against 1.2µm and 0.9 mm predicted during design by FEM
- •6 monthes test campaign 10/2005-04/2006 and parallel analyses until end of summer 2006 have been needed to fix the problem
- Most part of the effect explained by the uncertainty in the knwoledge of Invar to SiC CTE value
- High axial magnification => Amplification of the few tens of µm variations of the M1M2 cavity and high sensivity to small relative differences of CTEs

focus investigations & flight predictions

- No doubt was allowed on defocus value
 - the telescope is not equipped with in-flight focalization mechanism
 - No End to End test at satellite level
- Independent team of experts (« Tiger Team ») has been mandated by ESA to investigate the defocus
- CTE causes has been confirmed
- Focus has been compensated by shimming at the telescope to spacecraft interface on order to bring focal surface in the focal depth of tolerance of instruments
- In flight First light on PACS instrument has confirmed success of the operation

Flight predictions a Tiger team expertize D.Doyle courtesy

Telescope WFE PACS PSF @55µm

In flight performances

- Herschel is in orbit since 7 months
- General satisfaction of the science community after validations « exam »

PACS first images (on courtesy of G.Pilbratt –Science team)

- Comparison to NASA Spitzer Space telescope : Herschel is performing well optically at 100µm
- remarkable agreement between predicted PSF and observed one at 70µm
- Signature of the 3 isostatic mounts of the hexapode (trefoil)

SPIRE first images (on courtesy of G.Pilbratt)

- Remarkable similarity between Observation (Neptune at 250µm) and simulations;
- Signature of hexapode geometry (six branch diffraction)

