

External Cavity Diode Laser

CEL and CEF Cateye

Limitation of Liability

MOG Laboratories Pty Ltd (MOGLabs) does not assume any liability arising out of the use of the information contained within this manual. This document may contain or reference information and products protected by copyrights or patents and does not convey any license under the patent rights of MOGLabs, nor the rights of others. MOGLabs will not be liable for any defect in hardware or software or loss or inadequacy of data of any kind, or for any direct, indirect, incidental, or consequential damages in connections with or arising out of the performance or use of any of its products. The foregoing limitation of liability shall be equally applicable to any service provided by MOGLabs.

Copyright

Copyright © MOG Laboratories Pty Ltd (MOGLabs) 2014 – 2018. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior written permission of MOGLabs.

Contact

For further information, please contact:

$MOG\ Laboratories\ P/L$
49 University St
Carlton VIC 3053
AUSTRALIA
+61 3 9939 0677
info@moglabs.com
www.moglabs.com

MOGLabs Europe
Goethepark 9
10627 Berlin
Germany
+49 30 21 960 959
info@moglabs.eu

Preface

Diode lasers can be wonderful things: they are efficient, compact, low cost, high power, low noise, tunable, and cover a large range of wavelengths. They can also be obstreperous, sensitive, and temperamental, particularly external cavity diode lasers (ECDLs). In combination with advanced electronics such as the MOGLabs DLC external cavity diode laser controller, the CEL "cateye" laser described here provides a robust, stable, acoustically inert, low linewidth and highly tunable laser system.

We hope that the MOGLabs CEL works well for your application. Please let us know if you have any suggestions for improvement in the laser or in this document, so that we can make life in the laser lab easier for all, and check our website from time to time for updated information.

MOGLabs, Melbourne, Australia www.moglabs.com

Safety Precautions

Safe and effective use of this product is very important. Please read the following laser safety information before attempting to operate the laser. Also please note several specific and unusual cautionary notes before using MOGLabs lasers, in addition to the safety precautions that are standard for any electronic equipment or for laser-related instrumentation.

CAUTION – USE OF CONTROLS OR ADJUSTMENTS OR PERFORMANCE OF PROCEDURES OTHER THAN THOSE SPECIFIED HEREIN MAY RESULT IN HAZARDOUS RADIATION EXPOSURE

Laser output from the CEL can be dangerous. Please ensure that you implement the appropriate hazard minimisations for your environment, such as laser safety goggles, beam blocks, and door interlocks. MOGLabs takes no responsibility for safe configuration and use of the laser. Please:

- Avoid direct exposure to the beam.
- Avoid looking directly into the beam.
- Note the safety labels (examples shown in figure below) and heed their warnings.
- When the laser is switched on, there will be a short delay of two seconds before the emission of laser radiation, mandated by European laser safety regulations (IEC 60825-1).
- The STANDBY/RUN keyswitch must be turned to RUN before the laser can be switched on. The laser will not operate if the keyswitch is in the STANDBY position. The key cannot be removed from the controller when it is in the clockwise (RUN) position.

- To completely shut off power to the unit, turn the keyswitch anticlockwise (STANDBY position), switch the mains power switch at rear of unit to OFF, and unplug the unit.
- When the STANDBY/RUN keyswitch is on STANDBY, there cannot be power to the laser diode, but power is still being supplied to the laser head for temperature control.

WARNING The internal circuit board and piezoelectric transducers are at high voltage during operation. The unit should not be operated with covers removed.

CAUTION Although the CEL is designed and priced with the expectation that the end-user can replace the diode and change the alignment, some components are fragile. In particular the filter, piezo actuator, and output coupler are very easily damaged. Please take care of these items when working inside the laser.

The filter and output coupler are hard-coated and can be cleaned but great care is needed as with any intracavity laser optics.

NOTE MOGLabs products are designed for use in scientific research laboratories. They should not be used for consumer or medical applications.

Label identification

The International Electrotechnical Commission laser safety standard IEC 60825-1:2007 mandates warning labels that provide information on the wavelength and power of emitted laser radiation, and which show the aperture where laser radiation is emitted. Figure 1 shows examples of these labels, and figures 2 and 3 show their location on the CEL laser and large-chassis CEF version.

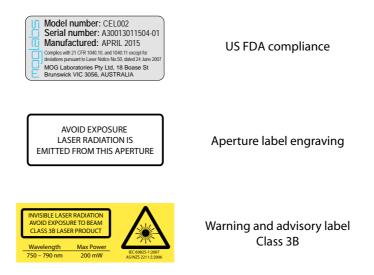
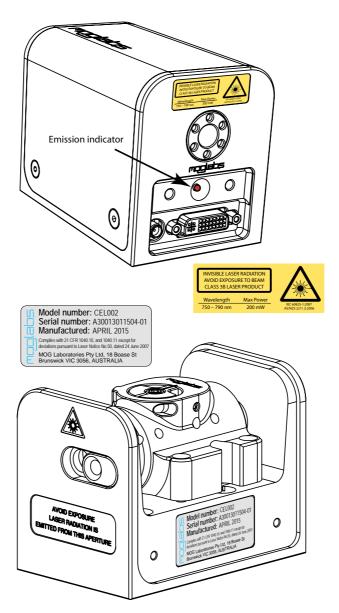
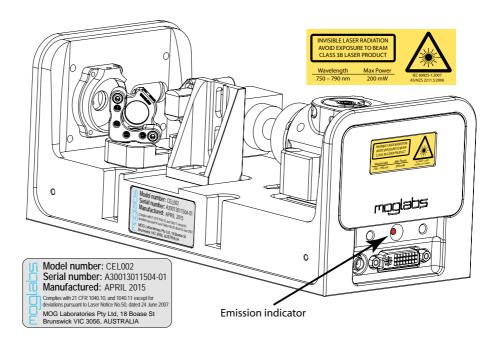




Figure 1: Warning advisory and US FDA compliance labels.

Figure 2: Schematic showing location of laser warning labels compliant with International Electrotechnical Commission standard IEC 60825-1:2007, and US FDA compliance label. Aperture label engraved on the front of the CEL laser near the exit aperture; warning advisory label on the rear and compliance label on side.

Figure 3: Schematic showing location of laser warning labels for the large-chassis CEF version of the categories.

Protection Features

MOGLabs lasers includes a number of features to protect you and your laser.

Protection relay When the power is off, or if the laser is off, the laser diode is shorted via a normally-closed solid-state relay at the laser head board.

Emission indicator The MOGLabs controller will illuminate the emission warning indicator LED immediately when the laser is switched on. There will then be a delay of at least 2 seconds before actual laser emission.

Interlock It is assumed that the laser power supply is keyed and interlocked for safety. The laser head board also provides connection for an interlock (see appendix B), if used with a power supply which does not include such an interlock.

RoHS Certification of Conformance

MOG Laboratories Pty Ltd certifies that the MOGLabs External Cavity Diode Laser does not fall under the scope defined in *RoHS Directive* 2002/95/EC, and is not subject to compliance, in accordance with *DIREC-TIVE* 2002/95/EC Out of Scope; Electronics related; Intended application is for Monitoring and Control or Medical Instrumentation.

MOG Laboratories Pty Ltd makes no claims or inferences of the compliance status of its products if used other than for their intended purpose.

Extending laser diode and piezo lifetime

At night, switch to standby:

- 1. If using the CEL to seed an amplifier, first turn off the amplifier.
- Switch the laser diode current off.
 If using a MOGLabs DLC controller, don't adjust the current, just switch the toggle up (off).
- 3. Switch from RUN to STANDBY.

For a MOGLabs DLC controller in standby mode, the temperature controller will continue to operate, so the laser is ready for quick startup the next day. But the laser diode current and piezo voltage will be zero, extending their operating life.

In the morning, switch back on:

- 1. Switch from STANDBY to RUN.
- 2. Switch the laser diode toggle down (on).

You don't need to adjust the current, just wait a few minutes for the diode temperature to equilibrate.

You should switch your MOGLabs DLC into STANDBY mode at nights and weekends and whenever the laser is not being used for more than a few hours. Most lasers need to operate only 40 hours during a 168 hour week; thus switching to standby mode can extend the diode and piezo lifetime by a factor of four.

Contents

Pr	eface		i
Sá	fety		iii
Pr	otecti	on Features	viii
Ro	HS (Certification of Conformance	ix
Ex	tendi	ng laser diode & piezo lifetime	Х
1	1.1 1.2	duction External cavity	1 3 3 3
2	First 2.1 2.2	light Temperature	5 5 5
3	3.1 3.2	ration Wavelength	7 7 9 10 11
4	Align 4.1 4.2 4.3 4.4	Pre-alignment of lens tube and diode	15 15 17 17 18
	4.5	CEF extended chassis	

xii Contents

		4.5.1 Faraday isolator alignment	21
	4.6	Fibre alignment	23
		4.6.1 Reverse beam: using a visual fault locator	24
		4.6.2 Mirror adjustment	24
Α	Spec	cifications	27
	A.1	CEL mechanical	29
	A.2	CEF mechanical	30
В	Lase	r head board	31
	B.1	B1045/1046 headboard	32
		B.1.1 RF coupling	32
	B.2	B1047/B1240 headboards	34
		B.2.1 SMA input	35
	B.3	Headboard connection to controller	36
Re	feren	CPS	40

1. Introduction

Semiconductor laser diodes are compact, efficient and low-cost, but usually have poor wavelength control, linewidth and stability. The addition of an external frequency-selective cavity allows control of the operating wavelength over a few nm range, with sub-MHz linewidth and stability. The MOGLabs CEL (see Fig. 1.1) is machined from a solid aluminium block, so that the laser is stable, robust, and insensitive to acoustic disturbances. The cavity is hermetically sealed for additional suppression of environmental fluctuations and drift.

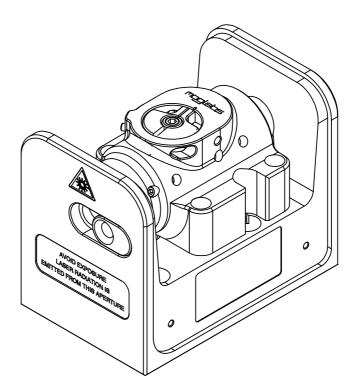


Figure 1.1: The MOGLabs CEL catego laser.

The MOGLabs CEL is a "cat-eye" design (see Fig. 1.2), in which an external cavity is formed between the rear reflecting surface of the semiconductor diode, and a cat-eye reflector at several centimetres from the diode [1–3]. Rather than the customary diffraction grating of Littrow-configuration ECDLs, a high efficiency ultranarrow filter is used to select a single external cavity mode. Without the need for illuminating a large area of a grating for feedback, a cat-eye retroreflector and partially transmitting output coupler can be used to form the external cavity. The catege reflector is inherently self-aligning, so that the laser is extremely insensitive to mechanical disturbance, and also ensures high feedback coupling efficiency and consequently narrow linewidth.

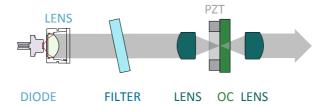


Figure 1.2: Schematic of a catego external cavity diode laser (ECDL). The external cavity, formed by the rear facet of the laser diode and the output coupler, determines the laser frequency. One longitudinal cavity mode is selected by an ultranarrow intracavity bandpass filter. A catego reflector is formed by the output coupler (OC) and intracavity lens, and the light is recollimated by the extracavity output lens.

The output beam from a laser diode is collimated with a high numerical aperture (NA) lens and incident on the filter. The filter transmission wavelength depends on the rotation angle. Transmitted light is back-reflected by the categories lens/output-coupler combination which efficiently couples light back into the laser diode. More details can be found in the references [1–3].

3

1.1 External cavity

Semiconductor laser diodes normally have a high reflectivity rear facet and a front facet with reflectivity of only a few percent. The diode cavity is called the intrinsic or internal cavity. The *external* cavity is formed by the category and the diode rear facet, and when the external feedback is greater than that of the front facet, the external cavity determines the lasing wavelength. The external cavity is typically around 40 mm long from rear facet of semiconductor to output coupler, giving a cavity mode spacing (FSR) of c/2L = 3 to 4 GHz.

The laser diode and collimating lens are held rigidly in a focusing tube. The filter is fixed to a bearing-mounted rotation assembly with fine actuator screws to adjust the angle. The spring-loaded screws operate in a push-pull arrangement which can be locked against each other to further reduce the effects of mechanical vibration. Variation of the filter angle is used for coarse selection of the wavelength, within the gain bandwidth of the laser diode.

1.2 Piezo-electric frequency control

Small changes to the laser frequency are achieved by controlling the external cavity length with a piezo electric actuator. For the MOGLabs CEL, the output coupler is mounted to a multilayer piezoelectric "stack". The cavity length variation is of order 10 nm per volt, producing a frequency shift of 70 MHz/V with a range of 10 GHz for 150 V drive voltage. The bandwidth is limited by mechanical resonances, typically 25 kHz.

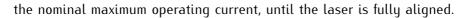
1.3 Temperature and current

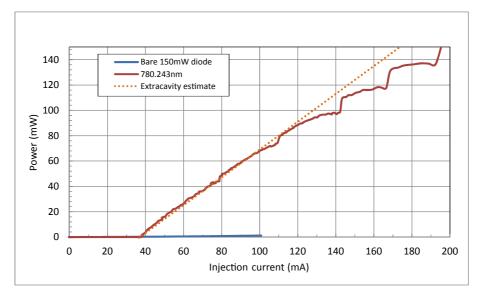
The laser frequency is also dependent on temperature and injection current; the sensitivities are typically $3\,\text{MHz}/\mu\text{A}$ and $30\,\text{GHz}/K$ [5]. Thus, low-noise stable electronics, such as the MOGLabs DLC external cavity diode laser controller, are essential (see Ref. [6]) to achieve sub-MHz linewidth and stability.

An important aspect of an ECDL is temperature control of the cavity, since the laser frequency depends on the cavity length and hence on the thermal expansion coefficient of the cavity material [4]. The cavity can be machined from materials with low thermal expansion coefficient but even then the passive stability is inadequate for research applications. Active feedback of the cavity temperature combined with cavity length control provide a flexible and stable approach. The MOGLabs CEL uses a negative temperature coefficient (NTC) thermistor to sense the cavity temperature and Peltier thermoelectric cooler (TEC) to heat and cool the cavity material.

2. First light

Once the laser is mounted appropriately, the laser can be switched on. For longer wavelength lasers, an infra-red upconversion card or CCD camera can be very helpful. Common low-cost security cameras, computer USB cameras, and home movie or still cameras are also good options, although they often have infra red filters which may need to be removed.

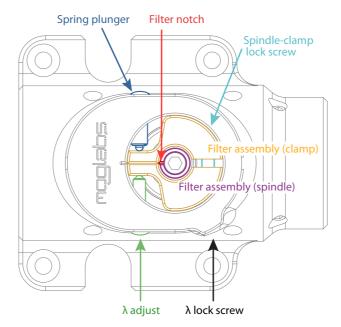

Once the laser is mounted appropriately, the laser can be powered on. It is assumed that a MOGLabs DLC controller has been provided with your laser and that the temperature and current limit have been set appropriately. If an alternative supply is used, please set a current limit according to the maximum safe operating current stipulated in the test data provided with your laser. Also note that $+5\,\mathrm{V}$ must be provided on pin 15 of the headboard connector to open the protective relay; see appendix B for connection details.


2.1 Temperature

The preferred diode temperature will depend on the diode, the required wavelength, and the ambient room temperature. For example, typical AlGaAs diodes used for data storage applications (CD-R burners) have a nominal wavelength of $\lambda=784\,\mathrm{nm}$ at $25^\circ\mathrm{C}$, with a $d\lambda/dT$ slope of $-0.3\,\mathrm{nm}/^\circ\mathrm{C}$, implying an optimum temperature of about 12° . Depending on the humidity, low temperatures may induce condensation on the diode and collimation lens. The grating will determine the final wavelength, and the feedback is generally sufficient to "pull" the wavelength by $\pm 5\,\mathrm{nm}$, and thus in this example a sensible set temperature would be $18^\circ\mathrm{C}$.

2.2 Current

The output of semiconductor laser diodes follow a linear power *vs.* current relationship, once the current is above a device-specific threshold (see Fig. 2.1). Initially the current should be set above threshold, but well below


Figure 2.1: Sample laser diode power-current characteristic curves, with and without an external cavity. The output for a diode with good anti-reflection coating is negligible. The steps show that for higher currents, some of the light from the diode is not transmitted by the filter, typically because the external cavity mode frequency is not perfectly aligned with the filter transmission frequency.

3. Operation

Normal operation of the laser is usually a matter of adjusting the filter rotation angle to select the correct wavelength, and adjusting the piezo offset, diode injection current and bias to achieve the maximum possible mode-hop free scan.

3.1 Wavelength

The primary control of wavelength is the filter rotation angle, which can be adjusted while the laser is operational. A wavemeter, high-resolution spectrometer, or similar is almost essential, although with patience it is

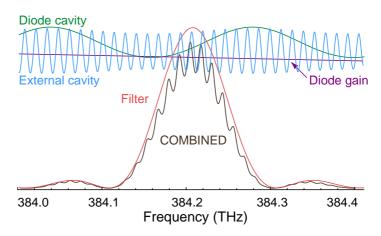
Figure 3.1: Filter angle adjustment, showing the primary wavelength adjustment screw and counter-acting spring plunger.

possible to find an atomic resonance by carefully adjusting the filter angle while scanning the laser.

To change the wavelength:

- 1. Unlock the filter so that it can rotate, by turning the spindle-clamp lock screw anti-clockwise, for example one full turn. The lock screw has a spring-loaded ball plunger, so even released, it will retain some pressure on the filter rotation cam.
- 2. Set the laser current so that the output power is sufficient, taking care to ensure that the internal cavity power is below the maximum rated for the diode (see Fig. 2.1).
- 3. Adjust the filter angle using the fine thread λ screw, acting against the spring-loaded ball plunger of the lock screw.
- 4. The laser will hop between external cavity modes as the wavelength is adjusted, through cycles of dim and bright output.
- 5. It may be necessary to adjust the spring plunger, so that pressure is maintained on the filter adjustment cam without locking completely.
- 6. Adjust the angle to one of the bright modes nearest the optimum wavelength, and then adjust the laser current and the piezo voltage to achieve the exact wavelength required.
- 7. Adjust tension on the spindle-clamp and spring-plunger to ensure stability. Fully locking the screws is useful if the laser is to be moved to a different site, but not necessarily best for normal laboratory use.

The filter transmission wavelength shifts with rotation according to


$$\lambda(\theta) = \lambda_0 \sqrt{1 - \left(\frac{\sin(\theta)}{n_{\text{eff}}}\right)^2}$$
 (3.1.1)

where θ is the angle of incidence, λ_0 is the filter wavelength at normal incidence and $n_{\rm eff}$ is an effective refractive index; $n_{\rm eff}=1.7$ is a good starting guess. The sensitivity to rotation of the fine tangential wavelength adjustment screw is about 0.5 nm to 1 nm per turn.

3.2 Scanning, mode-hops and BIAS

Mode-hops are a frequent occurrence with external cavity diode lasers. A mode-hop is a discontinuity when tuning or scanning the laser wavelength. As the laser wavelength is varied, usually by changing the cavity length with a piezo, competition between the wavelength determined by the different wavelength-dependent cavity elements can lead to a *mode hop*: a jump in laser wavelength to a different external cavity mode. Wavelength-dependent elements include the external cavity, the laser diode internal cavity between the rear and front facets of the diode, the filter transmission, and the gain bandwidth of the laser diode.

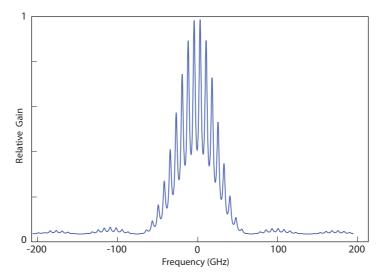

The different wavelength-dependent characteristics are shown schematically in figure 3.2. The net gain is the combined product of semiconductor gain, filter transmission, internal and external cavity interference. The net gain can be very similar at adjacent external cavity modes. A small change in the internal cavity mode, or the filter angle, can lead to the overall gain being greater at a mode adjacent to the mode in which the laser is oscillating, and the laser then hops to that higher-gain mode. See Ref. [4] for a detailed discussion.

Figure 3.2: Schematic representation for the various frequency-dependent factors of an ECDL, adapted from Ref. [4], for wavelength $\lambda = 780$ nm and external cavity length $L_{\rm ext} = 15$ mm.

3.3 Scanning

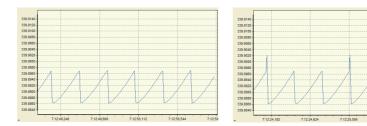

The external cavity length is usually controlled by piezo actuators moving the output coupler. The cavity length changes with piezo voltage, and for a large change, the laser will usually hop to a neighbouring cavity mode. Figure 3.3 is a schematic of the net gain variation with laser frequency, showing two adjacent modes of very similar gain. Figure 3.4 is a measurement of the frequency of a laser scanning properly, and with a mode-hop at one edge of the scan.

Figure 3.3: Combined gain for an external cavity diode laser, including the internal and external modes, the diode laser gain, and the filter response. The broad feature is the frequency selectivity of the filter, and the smaller peaks are the external cavity modes (see fig. 3.2). A small relative shift of the external cavity mode relative to the filter frequency will cause the laser to jump to another external cavity mode where the net gain is higher.

The mode-hop-free scan range (MHFR) can be optimised by careful adjustment of the injection current, which affects the refractive index of the diode and hence the frequency of the cavity mode.

3.3 Scanning 11

Figure 3.4: Frequency of a laser scanning properly (left) and with a mode-hop at one edge (right).

3.3.1 BIAS optimisation

This shift of cavity mode frequency allows for compensation of the mismatch of tuning responses. The diode injection current can be "automatically" adjusted as the laser frequency is changed, using a "feed-forward" or current bias which changes as the piezo voltage is changed. Feed-forward current bias adjustment is a feature of MOGLabs DLC controllers. Adjustment is straightforward. With the laser frequency scanning, the current bias control is adjusted until the maximum mode-hop-free scan range is observed. Small changes to the injection current optimise the scan range near the nominal centre frequency. Detailed instructions follow. A Fizeau wavemeter, an atomic absorption spectroscopy signal, or a Fabry-Perot cavity is required, to monitor the actual laser frequency while varying the different control parameters.

- 1. Make sure that BIAS is enabled (DIP switch 4).
- 2. Set the FREQUENCY knob to approximately 0V (use monitor display Frequency on the 8-position selector switch).
- 3. With SPAN set to max, adjust the BIAS trimpot to zero amplitude as see on monitor CHAN B Current output.
- 4. Adjust the laser diode CURRENT so that the laser wavelength and power are correct. Use the values provided in the original factory test report as a quide.

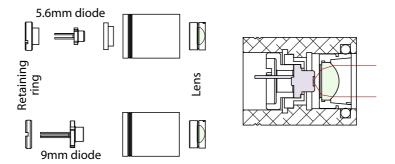
- 5. If the wavelength is close but not quite correct, small adjustments of either CURRENT or FREQUENCY may be required to find a better lasing mode. If more significant wavelength adjustment is required, either mechanically rotate the filter of the laser, or for changes of less than 0.2 nm, adjust the temperature set-point by 0.2 to 0.5°C. Note that the response to adjustment of the temperature setpoint is slow, and you should wait several minutes for the temperature to equilibrate.
- 6. If the wavelength is within a few pm (GHz) of your target, increase the SPAN while observing the Fizeau wavemeter Long Term measurement (or spectroscopy scan or FP cavity transmission on an oscilloscope), as shown in fig. 3.4.
- 7. As the SPAN is increased, you will at some point observe a mode hop. For spectroscopy scans it is easier to observe mode hops using the AC error signal from the MOGLabs DLC, if current modulation is enabled.
 - The mode hop should be at one edge of the scan; if so, adjust the FREQUENCY so that the scan no longer 'clips' this mode hop (i.e. the scan is free of mode hops), and continue adjusting in the same direction until a mode hop is observed on the other edge of the scan.
- 8. Adjust the FREQUENCY to the mid-point between the two extremes.
- 9. Increase SPAN further, until a mode hop is again apparent, and readjust the FREQUENCY to the mid-point.
- 10. Repeat until mode hops are observed at both edges of the scan.
- 11. Adjust the diode CURRENT by small amounts to try to remove at least one of these mode hops, then attempt to increase the SPAN further.
- 12. If the mode hops are at both edges of the scan and cannot be removed by FREQUENCY or CURRENT adjustments, turn the BIAS trimpot either clockwise or counterclockwise to remove one of both of the

3.3 Scanning 13

mode hops. If one trimpot direction only makes the mode hops worse, try the other trimpot direction. If both mode hops are removed, repeat the steps above (increasing SPAN) until no further improvements can be made to the MHFR.

13. If the MHFR is substantially less than expected (refer to the factory test report), it may be advisable to change mode by increasing or decreasing the CURRENT to find a nearby single-mode current, to rotate the filter slightly to alter the net gain so that one cavity mode has higher gain than those adjacent.

4. Alignment


The categories reflector arrangement is self-aligning, and should not require adjustment. If the laser diode is replaced, or the laser has been mishandled in shipping, the diode collimation and categories may require some focus adjustment.

To assist with alignment, an infra-red upconversion card or CCD camera can be very helpful. Common low-cost security cameras, computer USB cameras, and home movie or still cameras are also good options, although they may have an infrared filter which should be removed.

Diodes are very sensitive to electrostatic discharge. Please make sure you are electrically grounded, ideally with a wrist ground strap. If you do not have a proper wrist ground strap, at least be sure you are not wearing woolen clothing, and touch something grounded from time to time (e.g. a soldering iron tip, the earth of a power supply, the MOGLabs DLC controller).

4.1 Pre-alignment of lens tube and diode

- 1. Insert the laser diode into the lens tube (see Fig. 4.1). Ensure that the V-notch in the base flange of the diode is *not* aligned with one of the alignment screws.
- 2. Add the retaining threaded ring, and tighten gently, just enough such that the diode does not move.
- 3. Approximately centre the diode using the alignment adjustment screws and two 0.9 mm hex keys.
- 4. Insert the collimation lens, taking care to ensure that the lens does not contact the diode. Also ensure the lens is tight; if not, use PTFE tape on the lens threads. One or two layers of thick tape (90 μ m as used for gas plumbing) is good.

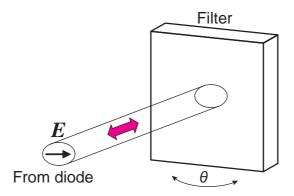
Figure 4.1: Lens tube assembly with diode, lens, and mounting hardware. The same tube can be used for 5.6 mm and 9 mm diodes.

Figure 4.2: Image showing collimation tubes with alignment adjustment screws.

- 5. Mount the lens tube in a holder or mount that allows rotation of the entire assembly around the long axis.
- 6. Apply power to the diode, above threshold but well below the maximum permissible current.
- 7. Approximately focus at four metres distance. It may be helpful to reflect it from a mirror and back so that you can adjust the alignment and see the effect nearby. You should adjust focus until you see a clean symmetric ellipse at this distance.
- 8. Rotate the collimation assembly and adjust the alignment screws until the beam remains reasonably well on-axis.

4.2 Initial diode test 17

9. Adjust the alignment to optimise the laser beam spatial profile even at the expense of maintaining concentric alignment. The profile should be a symmetric ellipse with Gaussian profile along each axis.


- 10. Tighten the retaining ring (hard) and re-check that the diode remains aligned.
- 11. Focus the collimation lens such that the laser focuses to a spot at 4 m distance. Then rotate the lens clockwise about 1/8 to 1/4 turn so that the beam is slightly diverging. Laser stability and modehop free range are generally slightly better if the beam is not perfectly collimated [6].

4.2 Initial diode test

- Inspect the beam profile for diffraction fringes. If the lens has been screwed in too far and made contact with the diode (particularly for 5.6 mm diodes), the lens can become scratched or stressed, leading to poor performance. Fringes can be an indication of such scratches (or an indication of a poor diode).
- 2. On the MOGLabs DLC controller, make sure DIP switch 4 (Bias) is OFF, the span is set to zero (fully anti-clockwise), and the frequency knob is at zero (middle of range; set the display selector to Frequency and adjust to zero volts).
- 3. Measure the power/current (PI) curve for the bare collimated diode. This provides a useful benchmark for comparison when optimising the threshold lowering with feedback.

4.3 Orientation and polarisation of the output beam

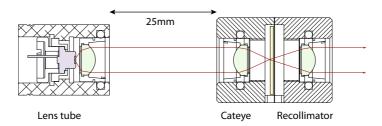
The output from the diode is a widely diverging *elliptical* beam, normally TE polarised; that is, with polarisation parallel to the *short* (minor) axis of the ellipse. The filter performance is typically better in *p*-polarisation; that is, with polarisation in the plane of reflection from the filter. In that

Figure 4.3: Orientation of the diode laser beam ellipse with respect to the filter rotation, for TM polarised diode, oriented with p-plane polarisation.

case, for the MOGLabs CEL, the polarisation should be horizontal and the ellipse should be with long axis vertical.

Some diodes, particularly around 750 to 820 nm, are TM polarised, with polarisation parallel to the long axis of the ellipse, as shown in Fig. 4.3. For these diodes, the ellipse should be horizontal.

The filter dependence on polarisation is weak and in most cases any rotation of the diode will work acceptably well.


4.4 Catege reflector

Light reflected from a cateye lens/mirror combination will be parallel to the incident radiation, regardless of the incident angle. Thus the cateye reflector is self-aligning: the light is always reflected back to the diode, even if the beam is not well collimated. The effect relies on the lens-mirror distance matching the focal length of the lens.

There are several methods for achieving optimum focus; probably the easiest is to adjust the focus so as to minimise the lasing threshold.

Mount the diode collimation lens tube and catego reflector assembly at

19

Figure 4.4: Arrangement of lens tube and categor reflector for adjustment of focus of categor.

about 25 mm apart, without filter (see Fig. 4.4). Set the diode current just below threshold, and then adjust the categories lens focus until the output suddenly flashes brightly, indicating effective feedback which tends to lower the overall ECDL gain threshold. Repeat until the minimum is obtained.

The sequence is as follows:

- 1. Mount the lens tube and categoreflector about 25 mm apart.
- 2. Monitor the output beam on a piece of black card at a short distance from the cateye assembly. It is helpful to recollimate the output after the cateye; any lens can be used, at approximately the focal length of that lens from the output coupler. Monitor the beam spot using a security camera or webcam.
- 3. Adjust the injection current to just below threshold.
- 4. Adjust the categories lens focus until a bright flash (i.e. lasing) is observed.
- 5. Iterate reduction of the injection current, following by focus of the cateye, until the minimum threshold is achieved.
- 6. Reassemble the laser and adjust the filter angle to achieve the desired wavelength.

- 7. If possible, scan the laser through an atomic resonance and view the absorption on an oscilloscope. With current bias disabled (DIP 4 on a MOGLabs controller) and full span, you should see a reasonable fraction of the absorption spectrum, with one or more mode-hops. A Fabry-Perot etalon or a fast high-resolution wavemeter (MOGLabs MWM) can also be used to optimise the mode-hop-free range.
- 8. Adjust the filter angle, and the injection current, to optimise the scans so that you see the maximum number of repeats and the deepest signals.
- 9. Check that the saturated absorption traces are clean. Noisy spectra indicate multi-mode operation, or high linewidth, which may be due to weak feedback. The lasing threshold is a good diagnostic: lower threshold indicates better feedback and consequently lower linewidth.
 - A scanning Fabry-Perot or a MOGLabs MWM wavemeter is a very useful diagnostic tool to check for single-mode operation.
- 10. Measure the laser output power as a function of diode injection current, and plot the power/current response as in Fig. 2.1. Compare against the original data provided with your laser and if concerned about discrepancies, contact MOGLabs.
- 11. Switch the current bias (DIP switch 4) back on, and adjust the bias to optimise the mode-hop-free scan range.

The laser should now be operating with mode-selected feedback near the desired wavelength of the diode. The threshold current should be significantly lower than without feedback (2 to 5 mA for uncoated 780 nm diodes). Record the output power and threshold characteristics for subsequent reference.

4.5 CEF extended chassis

The laser can be supplied in a very compact form, or with optional extended chassis (option CEF) which allows internal mounting of Faraday isolator, and also the addition of a fibre coupler (see fig. 4.5).

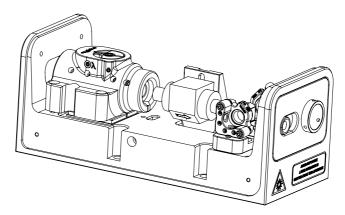
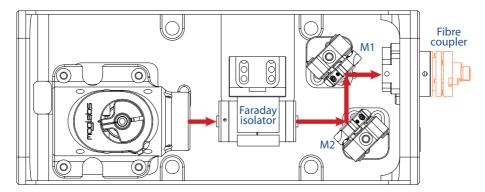
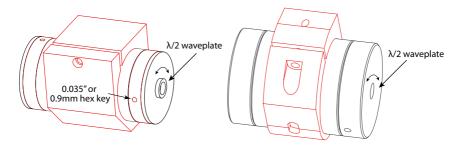



Figure 4.5: Extended chassis CEF option, shown here with CEL categories installed.


4.5.1 Faraday isolator alignment

Faraday isolators are almost always required for external cavity diode lasers. The very high gain of the semiconductor diode and low optical feedback of the external cavity mean that even very low power external feedback can have a significant effect on the laser frequency stability. Generally 30 dB of isolation is needed; that is, the optical feedback into the ECDL should be less than 0.1% of the output power.

The extended chassis version of a MOGLabs laser allows internal mounting of a Faraday isolator (see figure 4.6). Alignment is straightforward: the isolator should be concentric with the exit beam of the laser, and rotated axially so that the first polarisers is parallel to the polarisation of the laser beam. The power of the laser should be measured before inserting the isolator, and then the isolator position and rotation adjusted to maximise the transmission. Depending on wavelength, the transmission varies from

Figure 4.6: Schematic of the extended chassis laser showing Faraday isolator, and two mirrors used for aligning the beam to a single-mode fibre.

Figure 4.7: Two types of Faraday isolator. Each can be supplied with exit $\lambda/2$ waveplate inside one end-cap. The waveplate can be rotated to rotate the plane of polarisation of the exit beam, for example to optimise coupling into polarisation maintaining fibre, or to adjust the ratio of exit beams for lasers fitted with a polarising beamsplitter instead of mirror M2.

about 70% to 95%, with 90 to 92% typical at $780\,\mathrm{nm}$.

The isolator rotates the polarisation of the laser beam by 45°. For lasers ordered with fibre coupling, or with dual beam output (using a PBS polarising beamsplitter cube), the isolator can in most cases be ordered with internal half-wave retardation waveplate. The waveplate is mounted inside the end-cap of the isolator (see figure 4.7). On older (EOT) isolators, the waveplate is in the final silver-coloured metal element of the retarder.

The waveplate angle may need adjustment, for example to vary the power ratio for the two beams exiting the PBS or to align the polarisation to a more convenient horizontal or vertical axis for experiments, or to align to a polarisation preserving fibre. To adjust the waveplate angle, loosen the radial set screw holding the waveplate, rotate, and restore set screw tension. For older isolators use a 0.035" or 0.9 mm hex key; for MOGLabs isolators, a 1.5 mm hex key.

A second waveplate holder is available, which mounts inside the exit face of the laser (see figure 3). A standard 25.4 mm waveplate can be inserted, to align the polarisation of the reflected exit beam to match to an external experiment or to a polarisation preserving fibre, independent of the direct output beam.

4.6 Fibre alignment

The extended chassis is most often used when coupling to a single-mode otpical fibre. Two mirrors are used to align the beam to the fibre coupler: a common and familiar arrangement for optical scientists (see figure 4.6). The arrangement conveniently allows splitting the output into two beams, using a PBS as the first reflector.

Given the 8% Fresnel loss from entrance and exit facets of the fibre, the maximum theoretical efficiency for single-mode fibre coupling is 92%. The stainless steel kinematic mirror mounts are stable and easy to use, and coupling efficiency of over 70% is easily attained at 780 nm.

Alignment requires first adjusting the mirrors so that the beam exits the laser chassis in the centre of the fibre coupling port, and parallel to the long axis of the chassis. The fibre coupler can then be installed, without fibre, and the mirrors adjusted so that the beam is clearly transmitted by the coupler (see below for detailed instructions).

For Schäfter-Kirchhoff 60FC fibre couplers, detailed instructions on optimising the coupling efficiency are provided via their website:

CouplingSMS.pdf.

An eccentric key is provided for adjusting the lens focus.

4.6.1 Reverse beam: using a visual fault locator

A visual fault locator is a very useful device for quickly achieving initial coupling of the laser beam to the fibre. A visual fault locator (see fig. 4.8) is a low-power red laser that injects a beam into the *exit* end of the fibre patchcord, thus propagating visible light backwards along the fibre and then into free space, forming a beam back into the laser cavity. These devices are very low in cost (search on eBay for *visual fault locator*; they are typically less than \$20).

Figure 4.8: Fibre laser pen, or visual fault locator. Injects visible laser beam into fibre, which allows basic alignment and mode matching.

Aligning the MOGLabs laser beam to the fibre is then simply a matter of adjusting the mirrors so that the MOGLabs laser beam and the visual fault locator beam overlap inside the laser. It will be easier if the Faraday isolator is temporarily removed.

4.6.2 Mirror adjustment

To maximise the fibre coupling efficiency, the angle and location of the laser beam at the fibre coupler must be optimised by walking the mirrors.

Let M1 be the mirror closest to the fibre coupler, and M2 be closest to the laser (see figure 4.6).

- 1. Adjust the laser current so that the output power is around 5 to 10 mW.
- 2. If some power is detected exiting from the fibre, skip to step 9 below.
- 3. If the fibre coupler is not yet installed, first coarsely adjust the mirrors so that the beam exits through the centre of the fibre coupler

25

- mount, and parallel to the long axis of the laser chassis. Then install the coupler.
- 4. If some power is detected exiting from the fibre, skip to step 9 below.
- 5. With fibre patchcord removed, adjust the mirrors so that the beam exits from the fibre coupler cleanly. You should be able to observe a bright beam centred in the circle of a shadow of the fibre coupler.
- 6. Measure the power just before the fibre coupler and record the power meter reading.
- 7. If not already installed, connect the fibre.
- 8. If a visual fault locator is available, use that to inject a backwards-propagating beam, and adjust the mirrors so that the MOGLabs laser and visual fault locator beams are coincident along their paths. The visual fault locator can then be removed: a measurable transmitted beam should be evident at the fibre exit.
- 9. Fix the power meter to monitor the output power exiting from the optical fibre. Make sure background light is not affecting the reading.
- For the horizontal axis first, find the maximum output power by adjusting the mirror M1, closest to the fibre (furthest from the isolator), and record the output power.
- 11. Adjust the horizontal axis of mirror M2 furthest from the fibre (closest to the isolator) clockwise such that the output power drops by no more than 25%. If the efficiency is over 50%, drop the power by only 5 to 10% or less. Take note of roughly how many degrees rotation were required, so you can easily return to the original position.
- 12. Adjust the horizontal axis of mirror M1 and maximise for output power. Compare the new maximum output power to the output power obtained at step 10.
- 13. Repeat steps 10 to 12 if the power is increasing, or repeat but with reversed direction of adjustment if the power is decreasing.

- 14. Once horizontal alignment is optimised, repeat the procedure but using vertical adjustments.
- 15. Iterate horizontal and vertical alignment until power is fully optimised. As optimum coupling is approached, the adjustments should be reduced at each step.
- 16. If the coupling efficiency is less than expected, focus adjustment may be required (see instructions from Schäfter and Kirchhoff). Focus adjustment is not normally needed unless severe shock has moved the lens, or if a new diode has been installed in the laser, leading to change of beam waist location.
- 17. Once optimised, record the input power to the fibre coupler, maximum output power, and the laser current.
- Increase the laser current to the desired operating current and optimise if needed.
- 19. Use the factory test results for your laser as reference. Degradation may indicate facet damage on the fibre patchcord. Reversing or replacing the fibre patchcord may be helpful.

A. Specifications

Parameter	Specification
-----------	---------------

Wavelength/frequency				
370 – 1620 nm	Diode dependent.			
	Please contact MOGLabs for availability.			
Linewidth	Typically 100 kHz			
Filter	0.2 to 0.4 nm bandpass			
Tuning range	Typically 10 nm for single diode			

Sweep/scan	
Scan range	5 to 20 GHz depending on piezo
Mode-hop free	5 to 20 GHz
Piezo stack	3 μm @ 150 V, 100 nF (typical)
Cavity length	35 mm

Optical	
Beam	$3 \mathrm{mm} \times 1.2 \mathrm{mm} (1/\mathrm{e}^2) \mathrm{typical}$
Polarisation	Vertical linear 100:1 typical
	(can be rotated)

Parameter	Specification
-----------	---------------

Thermal	
TEC	$\pm 14.5 \mathrm{V}$ 3.3 A $Q=23 \mathrm{W}$ standard
Sensor	NTC $10\mathrm{k}\Omega$ standard; AD590, 592 optional
Stability at base	±1 mK (controller dependent)
Cooling	Optional: 4 mm diam quick-fit water cooling
_	connections

Electronics	
Protection	Diode short-circuit relay; cover interlock connection; reverse diode
Indicator	Laser ON/OFF (LED)
Connector	MOGLabs Diode Laser Controller single cable connect
Modulation input	Active (AC and DC coupled) or RF bias tee

Mechanical & power				
Dimensions	Dimensions $108 \times 70 \times 83 \text{mm} (L \times W \times H), 1 \text{kg}$			
Beam height	58 mm			
Shipping	$420 \times 360 \times 260 \text{mm}$ (L×W×H), 3.1 kg			

A.1 CEL mechanical 29

A.1 CEL mechanical

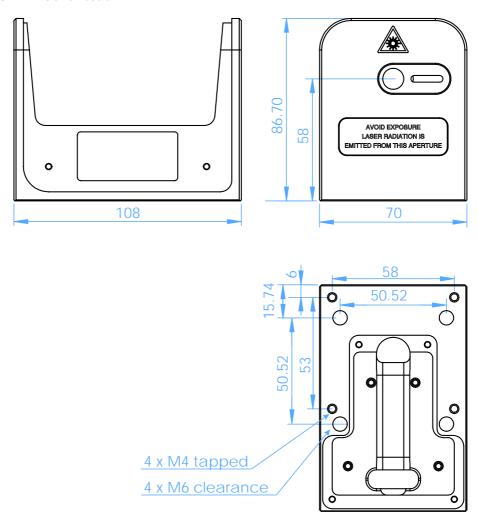
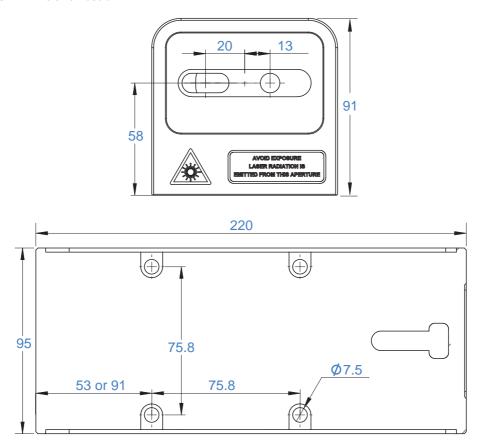



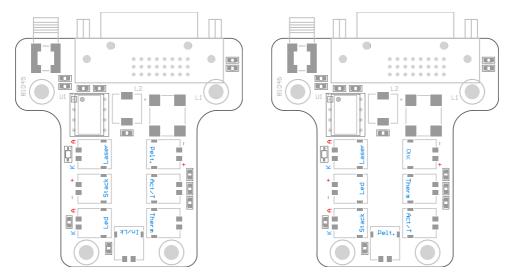
Figure A.1: Dimensions of CEL laser head.

A.2 CEF mechanical

 $\textbf{Figure A.2:} \ \ \mathsf{Dimensions} \ \ \mathsf{of} \ \ \mathsf{CEF} \ \ \mathsf{laser} \ \ \mathsf{head}.$

B. Laser head board

The laser head interface board provides connection breakout to the laser diode, TEC, sensor, piezo actuators, and laser head interlock. It also includes a protection relay and passive protection filters, a laser-on LED indicator, and an SMA connection for direct diode current modulation.


Several versions of the laser headboard are available.

MOGLabs lasers are built with a T-shaped headboard, using Hirose DF59 "swing-lock" wire-to-board connectors (Digikey H11958-ND and H11957CT-ND plug and crimp pin). The B1047 headboard provides high bandwidth active current modulation for wide bandwidth frequency stabilisation and linewidth narrowing, for example using a high finesse optical cavity or polarisation spectroscopy. Higher bandwidth is provided by the B1240 headboard which further increases bandwidth and reduces phase delay, to allow sub-Hz linewidth narrowing. The B1240 is limited to low compliance voltage laser diodes (red and infrared); the B1047 must be used for blue diodes. B1045 and B1046 headboards provide RF modulation via an RF bias tee allowing modulation up to 2.5 GHz, for example to add sidebands for repumping, or to add noise for coherence control.

In all cases, there is no provision for the internal photodiode in many consumer-grade laser diodes.

B.1 B1045/1046 headboard

The B1045 and B1046 provide connection to one or two piezos (slow high-range multi-layer stack and fast disc), and either passive NTC thermistor or active AD590/592 active temperature sensor. Note only one temperature sensor should be connected, not both. They provide an SMA input for direct diode modulation via an RF bias tee (see B.1.1 below).

Figure B.1: MOGLabs B1045 and B1046 laser head boards showing connectors for laser diode, piezo actuator, temperature sensors, TEC and head enclosure interlock. Connectors are Hirose DE59.

B.1.1 RF coupling

For the B1045/1046 headboard, the SMA connector allows high-frequency current modulation via a bias-tee. The RF input is AC coupled, with low-and high- frequency limits of about 30 kHz and 2.5 GHz (see fig. B.2). Capacitor C4, either 47 nF or 100 pF, can be changed to adjust the low-frequency cutoff. For higher bandwidths, use an external bias-tee such as the Mini-Circuits ZFBT-4R2GW-FT between the head board and the diode.

The input impedance is $10 \, k$. The sensitivity depends on the diode impedance but is typically around $1 \, mA/V$.

WARNING: The RF input is a direct connection to the laser diode. Excessive power can destroy the diode, which is separated from the head board relay by an inductor. Thus the relay does *not* provide protection from high frequency signals.

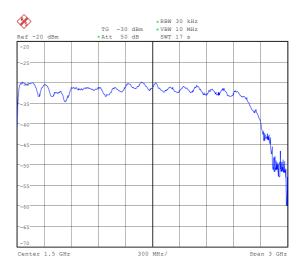
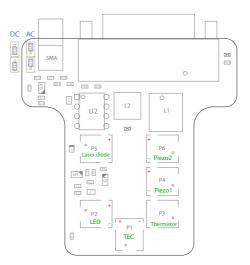



Figure B.2: RF response, SMA input on laser headboard to diode SMA output.

B.2 B1047/B1240 headboards

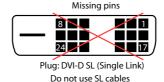
The B1047 and B1240 provide high-speed active modulation of the diode current. They use 500 MHz opamps and very low latency circuitry to reduce phase delay to around 12 ns for the B1240. The B1047 allows for closed-loop bandwidth of about 1.2 MHz while the B1240 can achieve about 4 MHz (in both cases, without phase advance). The latter makes it particularly easy to achieve sub-Hz linewidth reduction by locking to a high-finesse optical cavity. The B1240 also allows direct-ground connection or buffered; the latter is about 10% slower but reduces problems with ground-loop noise. The B1240 is not suitable for diodes with high compliance voltage, typically diodes with wavelength below 600 nm.

Note that connection to the SMA input will reduce the diode current, even if the input voltage is at zero.

Figure B.3: B1047 enhanced laser head board. Jumpers at top left can be configured for AC or DC coupling. Modulation input via SMA connector, sensitivity 2.5 mA/V. The B1240 is almost identical but has an additional jumper for direct or differential ground coupling adjacent to U2. Connectors are Hirose DF59.

B.2.1 SMA input

The B1047/B1240 SMA input provides AC or DC coupling to an active modulation circuit. Note that connection to the SMA input will reduce the diode current by about $1.6\,\mathrm{mA}$ (B1047) to $2.5\,\mathrm{mA}$ (B1240), with zero input voltage.


	B1047	B1240	
Input range	±2.0 V max	±2.0 V max	
Input coupling	AC/DC	DC (direct)	
		AC/DC (buffered)	
AC time constant	6 μs (25 kHz)	15 μs (10 kHz)	
Phase delay	40 ns	< 20 ns (direct)	
		< 30 ns (buffered)	
Gain bandwidth (-3 dB)	3 MHz	20 MHz	
Input impedance	5 k	1 k	
Current gain	1 mA/V	1 mA/V	
Laser diode voltage	10 V max	2.5 V max	

B.3 Headboard connection to controller

Note The MOGLabs laser cable is a digital DVI-D DL (dual link) cable. There is a bewildering assortment of apparently similar cables available. Most computer display DVI cables will not work because they are missing important pins; see diagram below. Only high quality digital dual-link DVI-D DL cables should be used.

Pin	Signal	Pin	Signal	Pin	Signal
1	TEC –	9	DIODE –	17	DISC +
2	TEC +	10	DIODE +	18	DISC -
3	Shield	11	Shield	19	Shield
4	TEC –	12	DIODE –	20	STACK +
5	TEC +	13	DIODE +	21	STACK -
6	$T_{\rm sense}$ $-$	14	Relay GND	22	
7	$T_{\rm sense}$ +	15	Interlock out	23	NTC –
8		16	+5V in	24	NTC +

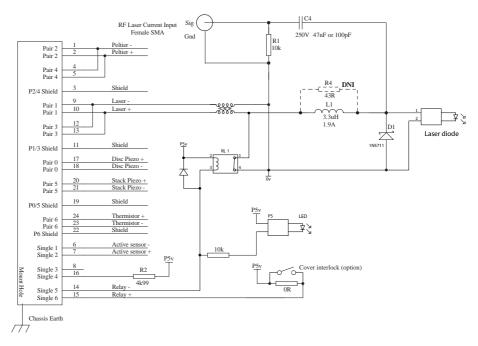


Figure B.4: Headboard connector. Note that the pinout is different to that of the matching connector on the rear of the DLC controller.

A 10 k thermistor should be connected to NTC+ and NTC-, but an AD590 or AD592 temperature sensor can be instead be connected to $T_{\rm sense}$. Pin 16 should be connected to a $+5\,\rm V$ supply. To activate the laser diode, relay GND (pin 14) should be grounded to open the relay that otherwise short-circuits the diode current. $+5\,\rm V$ (pin 16) is internally connected to pin 15 (Interlock), normally with a permanent connection but on some headboards (see above), a connector is provided to allow connection to a cover-activated microswitch to disable the laser when the cover is removed.

37

Figure B.5: MOGLabs DLC laser head board schematic (B1040/1045). The RF modulation low-pass cutoff frequency is determined by C4 and the diode impedance ($\sim 50\Omega$).

Bibliography

- [1] Daniel J. Thompson and Robert E. Scholten. Narrow linewidth tunable external cavity diode laser using wide bandwidth filter. *Review of Scientific Instruments*, 83(2):–, 2012. 2
- [2] X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, and P. Rosenbusch. Interference-filter-stabilized external-cavity diode lasers. *Opt. Communic.*, 266:609, 2006. 2
- [3] M. Gilowski, Ch. Schubert, M. Zaiser, W. Herr, T. WÃijbbena, T. Wendrich, T. MÃijller, E.M. Rasel, and W. Ertmer. Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms. *Optics Communications*, 280(2):443 447, 2007. 2
- [4] S. D. Saliba, M. Junker, L. D. Turner, and R. E. Scholten. Mode stability of external cavity diode lasers. *Appl. Opt.*, 48(35):6692, 2009. 4, 9
- [5] H. Talvitie, A. Pietiläinen, H. Ludvigsen, and E. Ikonen. Passive frequency and intensity stabilization of extended—cavity diode lasers. *Rev. Sci. Inst.*, 68(1):1, 1997. 3
- [6] S. D. Saliba and R. E. Scholten. Linewidths below 100 khz with external cavity diode lasers. *Appl. Opt.*, 48(36):6961, 2009. 3, 17
- [7] P. J. Fox, R. E. Scholten, M. R. Walkiewicz, and R. E. Drullinger. A reliable, compact, and low-cost michelson wavemeter for laser wavelength measurement. *Am. J. Phys.*, 67(7):624–630, 1999.
- [8] S. C. Bell, D. M. Heywood, J. D. White, and R. E. Scholten. Laser frequency offset locking using electromagnetically induced transparency. Appl. Phys. Lett., 90:171120, 2007.
- [9] G. C. Bjorklund. Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. *Opt. Lett.*, 5:15, 1980.

- [10] R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward. Laser phase and frequency stabilization using an optical resonator. *Appl. Phys. B*, 31:97–105, 1983.
- [11] M. Zhu and J. L. Hall. Stabilization of optical phase/frequency of a laser system: application to a commercial dye laser with an external stabilizer. *J. Opt. Soc. Am. B*, 10:802, 1993.
- [12] M. Prevedelli, T. Freegarde, and T. W. Hänsch. Phase locking of grating-tuned diode lasers. *Appl. Phys. B*, 60:241, 1995.
- [13] P. Feng and T. Walker. Inexpensive diode laser microwave modulation for atom trapping. *Am. J. Phys.*, 63(10):905–908, 1995.
- [14] C. J. Myatt, N. R. Newbury, and C. E. Wieman. Simplified atom trap by using direct microwave modulation of a diode laser. *Opt. Lett.*, 18(8):649–651, 1993.